ddzhao@lzu.edu.cn
飞云楼322室
(1) Dongdong Zhao*; K. Galkowski; B. Sulikowski; L. Xu; Derivation and reduction of the singular Fornasini-Marchesini state-space model for a class of multidimensional systems, IET Control Theory & Applications, 2020, 14(4): 634-645.
(2) S. Yan, Zhao Dongdong*, H. Wang, S. Matsushita, L. Xu. A novel constructive procedure to low-order Fornasini–Marchesini model realization. Journal of the Franklin institute. 357(3), pp. 1764-1789, 2020.
(3) Dongdong Zhao *; S. Yan; S. Matsushita; L. Xu; Common eigenvector approach to exact order reduction for Roesser state-space models of multidimensional systems, Systems & Control Letters, 2019, 134: 0-UNSP 104559.
(4) Dongdong Zhao; S. Yan; S. Matsushita*; L. Xu; An approach to multidimensional Fornasini–Marchesini state-space model realization w.r.t. columns of transfer matrices, Systems & Control Letters, 2019, 123:116-123.
(5) Dongdong Zhao *; S. Yan; S. Matsushita; L. Xu; Common eigenvector approach to exact order reduction for multidimensional Fornasini-Marchesini state-space models, International Journal of Systems Science, 2019, 50:6-74.
(6) Dongdong Zhao*; K. Galkowski; B. Sulikowski; L. Xu; 3-D modelling of rectangular circuits as the particular class of spatially interconnected systems on the plane[J]. Multidimensional Systems and Signal Processing, 2019, 30(3): 1583-1608.
(7) Dongdong Zhao; S. Yan; L. Xu*; Eigenvalue trim approach to exact order reduction for Roesser state-space model of multidimensional systems, Multidimensional Systems and Signal Processing, 2018, 29(4):1905-1934 .
(8) S. Yan; Dongdong Zhao; L. Xu*; Q. Li; A novel elementary operation approach with Jordan transformation to order reduction for Roesser state-space model[J]. Multidimensional Systems and Signal Processing, 2017, 28(4): 1417-1442.